An Endomorphism of the Khovanov Invariant

نویسنده

  • EUN SOO LEE
چکیده

We construct an endomorphism of the Khovanov invariant to prove H-thinness and pairing phenomena of the invariants for alternating links. As a consequence, it follows that the Khovanov invariant of an oriented nonsplit alternating link is determined by its Jones polynomial, signature, and the linking numbers of its components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings

A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...

متن کامل

Odd Khovanov Homology Is Mutation Invariant

We define a link homology theory that is readily seen to be both isomorphic to reduced odd Khovanov homology and fully determined by data impervious to Conway mutation. This gives an elementary proof that odd Khovanov homology is mutation invariant over Z, and therefore that Khovanov homology is mutation invariant over Z/2Z. We also establish mutation invariance for the entire Ozsváth-Szabó spe...

متن کامل

Calculating Bar-natan’s Characteristic Two Khovanov Homology

We investigate Bar-Natan’s characteristic two Khovanov link homology theory studying both the filtered and bi-graded theories. The filtered theory is computed explicitly and the bi-graded theory analysed by setting up a family of spectral sequences. The E2-pages can be described in terms of groups arising from the action of a certain endomorphism on F2-Khovanov homology. Some simple consequence...

متن کامل

Properties and applications of the annular filtration on Khovanov homology

The first part of this thesis is on properties of annular Khovanov homology. We prove a connection between the Euler characteristic of annular Khovanov homology and the classical Burau representation for closed braids. This yields a straightforward method for distinguishing, in some cases, the annular Khovanov homologies of two closed braids. As a corollary, we obtain the main result of the fir...

متن کامل

On Khovanov Invariant for Alternating Links

We prove the first conjecture of Bar-Natan, Garoufalidis, and Khovanov on the Khovanov invariant for alternating knots.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008